Cascade Evaluation of Clustering Algorithms

نویسندگان

  • Laurent Candillier
  • Isabelle Tellier
  • Fabien Torre
  • Olivier Bousquet
چکیده

This paper is about the evaluation of the results of clustering algorithms, and the comparison of such algorithms. We propose a new method based on the enrichment of a set of independent labeled datasets by the results of clustering, and the use of a supervised method to evaluate the interest of adding such new information to the datasets. We thus adapt the cascade generalization [1] paradigm in the case where we combine an unsupervised and a supervised learner. We also consider the case where independent supervised learnings are performed on the different groups of data objects created by the clustering [2]. We then conduct experiments using different supervised algorithms to compare various clustering algorithms. And we thus show that our proposed method exhibits a coherent behavior, pointing out, for example, that the algorithms based on the use of complex probabilistic models outperform algorithms based on the use of simpler models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

ارائه یک الگوریتم خوشه بندی برای داده های دسته ای با ترکیب معیارها

Clustering is one of the main techniques in data mining. Clustering is a process that classifies data set into groups. In clustering, the data in a cluster are the closest to each other and the data in two different clusters have the most difference. Clustering algorithms are divided into two categories according to the type of data: Clustering algorithms for numerical data and clustering algor...

متن کامل

بررسی مشکلات الگوریتم خوشه بندی DBSCAN و مروری بر بهبودهای ارائه‌شده برای آن

Clustering is an important knowledge discovery technique in the database. Density-based clustering algorithms are one of the main methods for clustering in data mining. These algorithms have some special features including being independent from the shape of the clusters, highly understandable and ease of use. DBSCAN is a base algorithm for density-based clustering algorithms. DBSCAN is able to...

متن کامل

Easy Web Search Results Clustering: When Baselines Can Reach State-of-the-Art Algorithms

This work discusses the evaluation of baseline algorithms for Web search results clustering. An analysis is performed over frequently used baseline algorithms and standard datasets. Our work shows that competitive results can be obtained by either fine tuning or performing cascade clustering over well-known algorithms. In particular, the latter strategy can lead to a scalable and real-world sol...

متن کامل

The ensemble clustering with maximize diversity using evolutionary optimization algorithms

Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006